2

4

8

16

20

1

2

3

4

-

This short note explains the first step toward a bedload calculation with BedloadWeb If you have a BedloadWeb account, first log in. Otherwise start typing: Click on 'your project' Welcome Data Base Your project (Basic) 1. Create a Grain Size Distribution (GSD) Click on 'Granulometry'. Welcome Data Base Your project (Basic) Your proje ? Input options: > Granulometry Cross section Projects Management Enter data O Use model Input format \bigcirc 0.5 Ψ $\textcircled{\ }$ Ψ \bigcirc Libre The right button offers 2 possibilities. 'Enter data' displays a table where you Ψ D(mm) Count (or can enter your measurements (D=Class diameter, Count=Number of grains

in this class).

But for simplicity we will here use the GSD model proposed by BeloadWeb: simply enter a value in the text box D50.

Sample	es:							Grai	n size	distribution:
? Input options:		8.								
C Enter data Use model	ر	-							~	Сору
D51-000) (st be >=2)		08 -							_	
25		<u> </u>						Open		New
D84(mm) (defaut is D84=2.1	D50)	~ %			/	/		Save		Delete
	Save	40								
Upper limit of the finer class	of	. 50								
the distribution (Defaut = 2n	nm) New								D%	D(mm)
	Delete		10.01	10100	10101	10102	10+02		D5	0
			10-01	12+00	18401	18402	16+03			

It's done. We have created a GSD (automatically named **GSD1**) which is composed of one sample named **ECH1**.

For a bedload calculation we can stop here and pass to the following.

But:

- you can add new samples to this GSD by clicking on 'New' in the left menu , and repeating the operation.
- you can create as many GSD as you want by clicking on 'New' on the right menu, and repeating the operation. Each sample must be saved before saving a Grain size Distribution (in other word always click Save before Save)
- Once you have created and saved several GSD you can display them on screen with the 'open' button

2. Create a bed geometry

Click on 'Cross section'.

Your project (Basic)	Your projec
Granulometry	> Cros	ss section

From the interface you can create a section either by uploading a xz.txt file (two columns named X, Z and tab separated), or by entering manually the X Z values in the left table. For simplicity we will use the trapeze modelling proposed by BeloadWeb:

Enter values in the left table, in ascending order for column 1 and 2:

You have created a complex cross section, composed of a main channel located inside a flood channel. Plays with the slide buttons in the right and see what happens.

Click on 'return to the entry to validate' for coming back to the section menu.

The section data are automatically reported in the left table, and you can modify them manually.

Use the sliders in the right for defining the **main channel** (where the main floods occur) and the **active bed** (part of the bed which is morphodynamically active for common floods and where bedload takes place). Generally the main channel and the active bed are identical.

Enter the slope. For instance 1% (S=0.01):

It's done, you can save the section with the save button. A name SEC1 appears on screen.

We stop here for this example but you can create as many sections as you want.

We have no more data to enter. In the following we will just play with sliders.

3. Hydraulics

	Welcome	Data Bas	e	Your project (I	Basic)	Your proje	ct (Advanced)
, 5	Projects Mana	gement	> (Granulometry	> Cro	ss section	> Hydraulic

Click on 'Hydraulics'

The section **SEC1** is displayed. Bellow the figure you can see that the grain size distribution **GSD1** has automatically been affected to each part of the bed (It could be changed by creating several GSD in the GSD menu if you consider that each part of the bed has a different granulometry).

- LB	Main Q= 0 U= 0	n channei DVs) m/s	Q= 0l/s		RB
N 0 -	He O				
o		10	20	30	40
●H ○Q	(m)	stop	x Slope: 0.01 m/m	Lownload the figure	
H(m)	0 0.285 0.57 0.855 1.14 1.425 1.71 1.905 2.28 2.56	2.85	Q total = 0 m3/s U mean =0 m/s Watted section area =0 m2	Q Main channel=0 m3/s U Main channel=0 m/s Er Main channel=0	SEC1 Save
Q(m3/s)		0	Water surface width = 0 m Wetted perimeter = 0 m	R Main channel=0 m T= 0 N/m2	
Friction law:	?				
Default Ferguson	Main channel	Active bed Char Ferguson V	annel 2 Fix bed LB erguson v Manning-Strickler v	Fix bed RB Roughness zone Manning-Strickler Manning-Strickler	
Granulometry GSD1 D84= 53.81	Granulometry GSD1 D84= 53.81	Granulometry GSD1 v D84= 53.81			

Change the water level with the slide button and see what happens...

It's done for the hydraulics. Continue to play with the different buttons and see what happens.

4. Bedload transport

			rour project (i	54610)	rour projec	, (, la tanoba)	-	-
W	/elcome	Data Base	Your project (Basic)	Your project	ct (Advanced)	Help	

Click on the 'sediment transport' button Projects Management

What you see is a summary of what have been created. The first panel of the figure presents the bedload models (as selected in the select box in the right of the screen) which have been constructed for the given section **SEC1** and grain size distribution **GSD1**.

Change the water height and see what happens:

The second panel of the figure and the right table display the values of bedload transport calculated by each equation for the given flow height. The last panel of the figure presents the grain size distribution of what is transported (which is usually finer than the bed material).

You can play with the different button and see what happens.

It's finished!!! You have computed bedload transport. Go back to the first page and save your project.

Note : at this stage if you are not connected to an account the only possibility you have to save these entries is to use the 'Local Backup' menu. All data will be saved in a txt file you can conserve in your computer, and reuse later with the same menu.

To go further: the SEDIMENT BUDGET

With a few additional clicks you can calculate a sediment budget.

1) Create an hydrograph Q(t):

Welcome	Data Base	Your project (Basic)	Your project (Advanced)	Help			
Projects Mana	gement >	Granulometry > Cro	oss section > Hydraulics	> Sediment transport	> Hydrology	Sediment budget	> Synthesis

You can import a hydrogaph in text format (two columns T, Q separated by a tabulation). But for this example we will automatically generate a simplified hydrograph with BedloadWeb. A section must be open (see above). Click on 'Parameter:

	Hydrology input	
Calculation option Hydrograph 	? Build a hydrogr	aph
Flow duration curve		Parameters
	T Rising (h)	Q peak (m3/s)
	10	9.3762580332998
Hydrology input	Tbase (h)	Q Threshold (m3/s)
? Build a hydrograph	20	4.6881290166499
Parameters	Duration (h)	Qmin (m3/s)
? Import a file	40	0.9376258033299
Browse No file selected		Apply

Values are automatically proposed, and when clicking on "Apply" a triangular theoretical hydrograph compatible with the flow section (maximum water depth that can pass through the section) is generated:

You have to save it, which creates a new object called "HYD1":

Management of hydrological data	
Select:	HYD1
~	Management of hydrological data
	Select:
Open	~
Save	=> Open

You can create as many hydrographs as you want and manage them with the page menu.

2) Create a sediment budget

Move to the next tab:

Welcome Data	Base	Your project (Basic)	Your proje	ct (Advanced)	Help			
Projects Management	t >	Granulometry	> Cros	ss section	> Hydraulics	> Sediment transport	> Hydrology	> Sediment budget	Synthesis

The name of the section that is opened in the "Section" tab, and for which we will calculate a sediment budget, is recalled at the top right.

Calculation option Hydrograph 	Ackers-White Bagnold Camenen-Larson	Sediment budget	SEC2 Save S: 0.01 m/m	
Flow duration curve	Einstein-Brown Engelund		D84: 72.47 mm	
Select:	Meyer-Peter Muller Parker/9 Parker90 Recking Dickenmann Schocklitch	Og Okg I ms Ot		
	Smart Jaeggi Van Rijn Wilcock Crowe	Equation m3 (reel)		
	Wong-Parker	Ackers-White 0.00	Plot options	
HYD1	The contract of the state of th	Bagnold 0.00	Hydrograph O Volume transported	
	Allow calculation beyond the maximum dimension of the section	Camenen Larson 0.00	Show legend	
		Einstein-Brown 0.00	🖂 Log	
Local hydrology ?	Correct the shear stress	Engelund 0.00	Download forum	
eferent watershed (km2)	Correct wall effects in glass wall canal	Meyer-P&M 0.00	a comocurgere	

By clicking on the drop-down menu on the left you can select the previously created hydrograph Q(t). Click on "Open" and the hydrograph is automatically associated with the section (for which the sedimentograph Qs(Q) has already been constructed in the "Solid Transport" page).

8

The solid discharge Qs(t) is then calculated for each of the equations selected. The graph shows the evolution over time.

The volumes transported by this event are presented in the table on the right or graphically by clicking on "Transported volume":

